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A B S T R A C T   

Constraint of the vertical distribution of aerosol particles is crucial for the study of aerosol plume structure, 
aerosol radiative effects, and ultimately monitoring surface air pollution. We developed an algorithm to retrieve 
the aerosol optical central height (AOCH) of absorbing aerosols by using, for the first time, the oxygen (O2) A and 
B absorption band measurements from the TROPOspheric Monitoring Instrument (TROPOMI) over dark targets. 
For the retrieval, narrow band radiance at seven channels ranging from ultraviolet (UV) to shortwave infrared 
(SWIR) are convolved from TROPOMI hyperspectral measurements. Subsequently, cloudy pixels are screened out 
by using the slope of spectral reflectance, while aerosol types (dust and smoke) are classified by the wavelength 
dependence of aerosol path radiance in conjunction with UV aerosol index. Surface reflectance over land is 
derived from the MODIS surface bi-directional reflectance climatology, and over water from the GOME-2 surface 
Lambert-equivalent reflectivity (LER) database. The aerosol optical depth (AOD) and AOCH are retrieved 
through an approach of look-up-table accounting for AERONET-based dust and smoke optical properties. For 
multiple smoke and dust plume events around the world, our retrieved AOCH values agree with space-borne lidar 
CALIOP counterparts, with a mean bias of <0.15 km and a correlation coefficient of 0.85–0.87. Due in part to 
adding the O2 B band, our retrieval represents an aerosol extinction peak height better than the TROPOMI 
operational Level 2 aerosol layer height retrieved from only the O2 A band. The latter shows 0.5–2 km low bias, 
especially over land. Finally, the high potential of AOCH for improving surface PM2.5 estimates is also illustrated 
with a case study in which the high bias of surface PM2.5 in MERRA-2 data is corrected after being scaled by the 
retrieved AOCH.   

1. Introduction 

The vertical distribution of tropospheric aerosols has significant 
impacts on the efficiency of aerosols affecting atmospheric radiative 
energy budget and cloud formation (Koch and Del Genio, 2010). It is 
also a key parameter for translating columnar aerosol loading observed 

from space, such as aerosol optical depth (AOD), into surface fine 
particular matter (PM2.5) concentrations (Wang and Christopher, 2003). 
Aerosol particles from local industrial emissions are often well-mixed in 
the planetary boundary layer, and their concentration usually decays 
rapidly with altitude in the free troposphere. However, during long 
transport or for aerosols from other sources, such as dust, biomass 
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burning, and volcanic emissions, aerosols can be elevated with a con-
centration peak at a high altitude above ground. For instance, soil par-
ticles from dust outbreaks can be easily lifted by frontal systems into the 
free troposphere. The heat release from volcanic emissions and wildfires 
can lift smoke plumes into the upper free troposphere/lower strato-
sphere (Christian et al., 2019; Peterson et al., 2014; Xu et al., 2018a). 
Indeed, the vertical distribution of atmospheric aerosols is regulated by 
the interaction between meteorological conditions (including wind, at-
mospheric stability, planetary boundary layer) and particle emission 
and deposition processes, particle microphysics and so on. Because of 
the resulting complex interplay, large uncertainty in aerosol vertical 
profile persists in chemistry transport models at both the global (Koffi 
et al., 2016) and regional scales (Wang et al., 2013; Yang et al., 2013). 
Therefore, accurately assessing the spatial and temporal distribution of 
aerosol height is challenging but critically important. 

Satellite remote sensing is one of the most effective ways to char-
acterize the aerosol profiles at the global scale. Space-borne lidar, such 
as Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) (Winker 
et al., 2013; Winker et al., 2009), is able to provide the detailed structure 
of aerosol extinction from backscattering measurements. The high ver-
tical resolution of the lidar product, however, is coupled with low spatial 
coverage due to the lidar’s narrow field of view and wide orbit gap. To 
gain greater coverage, the community is turning to passive remote 
sensing techniques to derive aerosol layer height (ALH) information 
from reflected and scattered solar radiance over larger area. The 
satellite-observed solar spectrum reflected by the Earth and scattered by 
the atmosphere is sensitive to ALH at different channels, such as ultra-
violet (UV) and infrared or thermal bands. The spectral characteristics in 
these channels make it possible to retrieve ALH from space (Lyapustin 
et al., 2020; Wu et al., 2016). One promising passive remote sensing 
technique to retrieve ALH makes use of the absorption bands of atmo-
spheric gas, such as oxygen (O2), whose vertical distribution is often 
stable and not affected by anthropogenic emissions (Zeng et al., 2008). 
When considering aerosol scattering in O2 absorption bands, a photon 
travels a longer path when aerosols are present at low altitude than at 
high altitude, leading to less backscattered radiance in satellite mea-
surements because of more absorption by O2 (Ding et al., 2016; Wang 
et al., 2014; Xu et al., 2019). Some theoretical analysis demonstrated 
that the independent information for aerosol profiles contained in sat-
ellite observed narrow-band reflectance inside and outside O2 absorp-
tion channels are limited, making it hard to retrieve aerosol extinction 
characteristics with high vertical resolution (Gabella et al., 1999; Tim-
ofeyev et al., 1995). Sensitivity studies by Corradini and Cervino (2006) 
and Hollstein and Fischer (2014) revealed that the retrieval accuracy 
and vertical resolution generally benefit from higher spectral resolution. 
Therefore, the spectrum in the O2 A absorption band (760 nm) observed 
by the SCanning Imaging Absorption spectroMeter for Atmospheric 
CHartographY (SCIAMACHY) with ~0.4 nm resolution is helpful for 
aerosol profile retrieval, and Kokhanovsky and Rozanov (2010) suc-
cessfully derived the top height of a homogeneous-extinction dust layer 
through spectral fitting from SCIAMACHY. The absorption bands of 
dimer of oxygen (O2− O2) also contain similar information for inferring 
ALH. Compared with those absorption bands in UV, the 477 nm band 
has a stronger O2− O2 absorption and weaker Rayleigh scattering and, 
hence, is more sensitive to a change of ALH. On the other hand, given 
that the aerosol information will be improved when the surface albedo 
decreases, low surface reflectance at 477 nm is conducive to ALH 
retrieval as well. Thus, the O2− O2 477 nm band has been used to derive 
ALH from measurements of the new Geostationary Environment Moni-
toring Spectrometer (GEMS), launched in February 2020, whose algo-
rithm was also applied in retrieval experiments using Ozone Monitoring 
Instrument (OMI) measurements (Chimot et al., 2017; Park et al., 2016). 
Similarly, the lower surface reflectance in the O2 B absorption band 
around 688 nm, especially for vegetation, has advantages in ALH 
retrieval when compared with the O2 A band, even though its O2 ab-
sorption is weaker. On the other hand, the chlorophyll fluorescence 

cannot be ignored in the O2 A band to avoid biases in aerosol retrieval 
(Sanders and de Haan, 2013), but it has little impact on O2 B band ra-
diation. Following a previous study using the measured reflectance ratio 
of inside to outside the O2 A band (Dubuisson et al., 2009), we have 
developed an ALH retrieval algorithm combining the reflectance ratios 
from both the O2 A and B bands and applied it to EPIC/DSCOVR ob-
servations (Xu et al., 2017; Xu et al., 2019). However, with its coarse 
spatial resolution (pixel size over 10 km), EPIC pixels are often 
contaminated by clouds, yielding few cloud-free pixels for retrieving 
ALH. 

In this study, we develop, for the first time, an algorithm to retrieve 
ALH using radiance observations in the O2 B band from the TROPO-
spheric Monitoring Instrument (TROPOMI) onboard the Sentinel 5 
Precursor (S5P) satellite. Aimed at monitoring daily concentrations of 
trace gases and aerosols at high spatial resolution globally, TROPOMI/ 
S5P is a relatively new instrument that was successfully launched in 
October 2017 and has been providing atmospheric composition prod-
ucts since April 2018. TROPOMI measures the hyperspectral Earth- 
reflected solar radiation at the top of the atmosphere (TOA) covering 
UV to shortwave infrared (SWIR) bands, including both the O2 A and B 
absorption bands. Considering 2–3 degrees of freedom for signal (DFS) 
of aerosol profiles in the troposphere are provided by SCIAMACHY 
(Colosimo et al., 2016; Corradini and Cervino, 2006), the similar spec-
tral resolution of TROPOMI (0.35 nm) indicates that the retrievable 
aerosol profile parameters are limited as well. As a result, the current 
operational algorithm of TROPOMI using the O2 A band spectrum 
through an optimal estimation method retrieves only a single profile 
parameter, the middle pressure of the aerosol layer (Nanda et al., 2020). 
In this algorithm (hereafter called the ALH-O2A algorithm), aerosols are 
assumed to be uniformly distributed within a single layer that is 50 hPa 
in pressure thickness. However, the aerosol backscattering vertical dis-
tribution measured from the Mini MicroPulse Lidar in the study by Zeng 
et al. (2018) shows a Gaussian-like shape, and the sensitivity study of the 
ground-based aerosol profile retrieval finds that assuming a Gaussian a 
priori profile gives better retrieval accuracy than other profile shapes 
(Xing et al., 2017). Actually, the Gaussian aerosol profiles described by 
two parameters have been used in many retrieval algorithms to reduce 
the number of parameters in the state vector meanwhile to approximate 
aerosol vertical shape closer to reality (O’Dell et al., 2018; Xu et al., 
2017; Xu et al., 2019; Zeng et al., 2020). According to the recent global 
one-year (2018–2019) assessment of TROPOMI operational ALH-O2A 
retrievals against the CALIOP-based AOCH data that was computed as 
the mean altitude weighted by aerosol extinction at each layer, Nanda 
et al. (2020) indicated that operational algorithm retrieves lower ALH 
compared to CALIOP, by ~2 km over land and ~ 0.5 km over ocean. 
Over ocean and dark land, the main difference is attributed to the dif-
ference in the sensor sensitivity to aerosol layers, centroid for TROPOMI, 
top of the plume for CALIOP. When the surface becomes brighter, a bias 
towards the surface is found, which increases as the surface reflectance 
increases. A similar comparison for the 2018 North American fires in-
dicates that this bias also strongly depends on the thickness of the smoke 
plume, which controls the relative contribution of the satellite signal 
from the surface (Griffin et al., 2020). For instance, − 2.1 km bias of 
ALH-O2A is found for thin plumes, but that is reduced to only − 0.7 km 
on average for plumes thicker than 1.5 km. These results were confirmed 
by the Multi-angle Imaging SpectroRadiometer (MISR) stereoscopic 
plume height retrievals as well (Griffin et al., 2020). 

A number of attempts to overcome this problem of surface interfer-
ence have been tried in the ALH-O2A algorithm, such as fitting the 
surface albedo in the retrieval (Sanders et al., 2015), or dynamically 
scaling the instrument noise to those parts of the spectrum that are more 
sensitive to aerosol scattering and less sensitive to the reflectance from 
the bright surfaces (Nanda et al., 2018). While the dynamic scaling 
method was successful in principle, the accuracy improvement was low. 
This motivates us to take the O2 B band into consideration. Actually, as 
shown from the United States Geological Survey (USGS) Spectral Library 

X. Chen et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 265 (2021) 112674

3

version 7 (Kokaly et al., 2017), most land surface classes present lower 
surface reflectance in the O2 B band than in the O2 A band, especially for 
vegetated surface (“dark target”), whose surface albedo are almost 
smaller than 0.1 in the O2 B band but always larger than 0.2 in the O2 A 
band (Xu et al., 2019). Thus, given the advantage of reducing the 
interference from the surface, the O2 B band is combined with the O2 A 
band in our algorithm to retrieve aerosol optical central height (AOCH) 
from TROPOMI (hereafter called the AOCH-O2AB algorithm). Such a 
combined use provides additional information on the vertical distribu-
tion of atmospheric scatterers, attributable to differences in the ab-
sorption strengths of the two bands and their underlying surface 
albedos, as proved by synthetic information content analyses and an 
application of the SCIAMACHY data (Sanghavi et al., 2012). 

Besides the O2 B band, our AOCH-O2AB algorithm also includes the 
improved representation of aerosol single scattering properties and the 
assumption of aerosol vertical profile shape (as compared to ALH-O2A). 
We further showcase the potential application of satellite-retrieved 
AOCH to improve the estimation of surface PM2.5 from the Modern- 
Era Retrospective analysis for Research and Applications, Version 2 

(MERRA-2) dataset. As the first multidecadal reanalysis within which 
meteorological and aerosol observations are jointly assimilated into a 
global assimilation system, MERRA-2 provides hourly three- 
dimensional aerosol concentrations and globally gridded surface PM2.5 
data. Although bias-corrected AOD from multiple satellite instruments 
and ground-based observations, such as the Moderate-resolution Imag-
ing Spectroradiometer (MODIS), the Advanced Very High Resolution 
Radiometer (AVHRR), MISR, and the Aerosol Robotic Network (AER-
ONET), are assimilated in MERRA-2 system, there is no aerosol vertical 
profile information investigated. This motivates us to apply our 
retrieved AOD and AOCH-O2AB from TROPOMI into the PM2.5 correc-
tion of MERRA-2. 

We describe the processing of TROPOMI radiances data and ALH- 
O2AB algorithm development in Section 2. We evaluate the AOCH-O2AB 
retrievals in Section 3 by focusing on multiple cases of smoke and dust 
events over dark targets and comparing them with CALIOP aerosol 
extinction weighted height. An intercomparison with the ALH-O2A 
product is also conducted in this section. In Section 4, we show the 
potential application of satellite-retrieved AOD and AOCH to improve 

Convolve to LUT bands (388, 443, 680, 688,
764, 780, 2320 nm) and resample to the same

spatial resolution (0.05o*0.05o)

Cloud screen using spectral
slope from UV to SWIR

TROPOMI L1B hyperspectral
radiances from B3 to B7

Use least-squares to find the optimal
AOD at 680 nm and ALH by

minimizing the error (Obs - LUT)

MODIS MCD43
surface products
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geometries, surface reflectance,
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AERONET aerosol
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pressure:
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340 and 380 nm
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Water

Lookup Table

Fig. 1. The flowchart of TROPOMI AOCH retrieval algorithm.  
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the PM2.5 estimates in MERRA-2 based on a smoke event. The conclu-
sions and discussions are given in Section 5. 

2. ALH retrieval algorithm for TROPOMI 

2.1. Algorithm overview 

Fig. 1 shows the flowchart of the data processing and retrieval steps 
of the AOCH-O2AB algorithm. These steps are described as follows: 

1. Instead of fitting the spectral structure of intensity in each O2 ab-
sorption band at high spectral resolution, we use the narrow-band 
intensities convolved from the TROPOMI hyperspectral level 1B 
(L1B) measurements ranging from UV to SWIR withassumed spectral 
response functions for multiple channels. This convolution is used to 
not only retain the O2 A and B absorption signal in the measurement, 
but more importantly to improve the retrieval speed using a look-up 
table (LUT) approach. Otherwise, the retrieval would need to invoke 
the computationally expensive high-resolution forward radiative 
transfer simulation to fit the fine spectral structure for gas absorp-
tion. Given the coarser spatial resolution of the SWIR spectrometer in 
comparison to others, we resample the convolved radiance in all 
narrow bands to the same geolocation grid.  

2. The surface reflectance for each pixel is derived after classifying the 
land and water surface based on the pixel location. We apply 
different surface reflectance climatology over land and water. For 
land surface, the normalized difference vegetation index (NDVI) is 
estimated as well. Considering that the algorithm in this study 
mainly focuses on dark targets, only those pixels with NDVI >0.2 are 
used in the following retrieval steps.  

3. Cloud-mask procedures are conducted to select cloud-free pixels 
containing lofted layers of absorbing aerosols that are suitable for 
ALH retrieval. According to the spectral slope of TOA reflectance 
between different bands, those pixels contaminated by clouds are 
screened out. For this study, based on the work of Xu et al. (2019), we 
mainly focus on retrieval of absorbing aerosols when the UV aerosol 
index (UVAI) computed at 340 and 380 nm is larger than 0.5.  

4. The absorbing aerosol types are classified as either dust or smoke for 
each valid cloud-free pixel. The aerosol path radiance is approxi-
mated and used to distinguish dust and smoke aerosols. Two LUTs 
calculated with dust or smoke aerosol properties, respectively, will 
be applied for pixels covered by corresponding aerosol types.  

5. The TROPOMI radiance in the O2 A and B bands are compared with 
the LUT, and the optimal AOD and AOCH are found by minimizing 
the difference between observations and the LUT. The inversion uses 
a flexible spectral fitting strategy that multi-band observations could 
be fitted. 

This retrieval procedure has several key differences with that of the 
AOCH-O2AB algorithm in the literature for EPIC (Xu et al., 2017; Xu 
et al., 2019). First, the TROPOMI L1B radiance is observed at a high 
spectral resolution to detect the absorption lines of trace gases, such as 
ozone or carbon monoxide. However, unlike trace gas retrievals that use 
the well-defined absorption lines of corresponding trace gases, aerosol 
retrieval mainly relies on the dependence of aerosol scattering on 
wavelengths that have no fine spectral structure. Thus, we convolved 
TROPOMI spectral data with a Gaussian response function to produce 
narrow-band observations suitable for aerosol retrievals; this step is 
effectively similar to the OMI UV aerosol retrieval algorithms that use 
several discrete channels (rather than all channels) (Torres et al., 2007). 
Second, the cloud screening thresholds of Xu et al. (2019) are based on 
EPIC visible and near infrared observations, while for this study, we 
redesign cloud-screening procedures by leveraging the larger spectral 
range (UV to SWIR) in the TROPOMI measurements. Thus, new 
thresholds are adopted and a new cloud mask algorithm is developed. 
Third, we develop a new aerosol type selection method to separate two 

types of absorbing aerosols, dust and smoke, based on the approxima-
tion of aerosol path radiance in the blue and SWIR bands. Last but not 
least, the land surface reflectance is updated by averaging MODIS sur-
face products over ten years, and the LUT for smoke and dust properties 
is updated using the statistical aerosol microphysical parameters from 
ground-based inversion in recent years. Details about these de-
velopments and updates are provided in the following subsections. 

2.2. Convolving TROPOMI spectra 

Operating in low Earth orbit, S5P is designed to have 13:30 local 
overpassing time as the synergistic exploitation of simultaneous mea-
surements of the Visible Infrared Imaging Radiometer Suite (VIIRS) in-
strument on-board NASA’s Suomi-NPP. In this way, the collocated, high- 
resolution data from the Visible Infrared Imaging Radiometer Suite 
(VIIRS) instrument on-board Suomi-NPP could be utilized in TROPOMI 
data processing. With a 2600 km swath and 16-day orbit repeat period, 
TROPOMI flies in a sun-synchronous orbit 824 km above the Earth’s 
surface and operates in push broom mode. The S5P trails behind Suomi- 
NPP by 3.5 min in Local Time Ascending Node, allowing its swath to 
remain within the scene observed by Suomi-NPP. As a successor of OMI, 
the TROPOMI combines the strengths of SCIAMACHY, OMI and state-of- 
the-art technology to provide better performance in terms of sensitivity, 
spectral resolution and spatial resolution. TROPOMI consists of four 
spectrometers, each electronically split into two bands, to detect the 
TOA radiance reflected by the surface in the UV, VIS, near-infrared 
(NIR), and SWIR, respectively. The spectral and spatial resolutions of 
the eight bands are (slightly) different. For instance, the spectral reso-
lution is 0.45–0.65 nm for UV or VIS bands, and 0.35 nm for NIR and 
0.225 nm for SWIR bands. The footprint of SWIR bands is 5.5 × 7 km2, 
slightly larger than the 5.5 × 3.5 km2 of other bands. The wide spectral 
range of TROPOMI, including the absorption bands of ozone (O3), ni-
trogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), 
methane (CH4), and formaldehyde (CH2O), provides the ability to 
monitor these key pollution gases as well as aerosol and cloud 
properties. 

In our retrieval algorithm, the original L1B spectrum with the broad 
spectral range of each band (30–100 nm) is convolved using narrow- 
band filters. Then, seven narrow-band radiances at 388, 443, 680, 
688, 764, 780, and 2320 nm are derived, respectively. Except for two O2 
absorption bands, the radiances in other narrow bands are applied in the 
cloud mask algorithm. Similar to the “Deep Blue” aerosol retrieval al-
gorithm (Hsu et al., 2006; Hsu et al., 2013), the TOA radiance from the 
443 nm band is used for AOD retrieval. At this wavelength, the low 
surface reflectance for a wide range of surface types, from forested to 
some arid is helpful for aerosol retrieval. The ratios of the measurements 
in the O2 A (764 nm) and B (688 nm) bands to their nearby continuum 
bands at 780 and 680 nm, are intended to be used for deriving AOCH. In 
addition, similar to the MODIS cloud and aerosol algorithms, the SWIR 
band (2320 nm) is used for both the cloud mask and absorbing aerosol 
classification. 

Before convolution, based on the quality flags defined in L1B data, 
only those pixels with good quality at each sampling wavelength are 
selected for the subsequent spectral convolution. In the convolution 
process, we apply the spectral response function of EPIC in corre-
sponding bands as the convolution filters. For those bands not involved 
in EPIC (e.g., 2320 nm), a Gaussian response function with a fixed full 
width at half maximum (FWHM) (2.355 nm, standard deviation of 
Gaussian distribution is 1 nm) is used instead. Fig. 2 provides all of the 
narrow-band filters we used along with atmospheric transmittance 
across the entire TROPOMI spectral range. The filters in the O2 A and O2 
B bands are compared with the standard TROPOMI response functions 
with fine FWHM (0.35 nm, the spectral resolution we mentioned above, 
from L1B data) in Fig. 2b and c, respectively. It is found that the (EPIC) 
narrow-band filters with coarser FWHM still catch the O2 absorption by 
giving more weight to the spectral response at the main O2 absorption 
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lines. Ultimately, the convolved narrow-band TROPOMI-observed TOA 
radiances could be converted to TOA reflectance similar to LUT from 
radiative transfer simulation following the definition in Eq. (1): 

ρ =
πI

cosθ0E0
, (1)  

where ρ and I represent the TOA reflectance and TOA radiance, 
respectively, E0 denotes the incoming solar irradiance, and θ0 is solar 
zenith angle. In this study, the daily observed TROPOMI solar irradiance 
data is used (https://sentinels.copernicus.eu/documents/247904/354 
1451/Sentinel-5P-Level-1b-Product-Readme-File). 

There are several reasons to use narrow-band instead of original 
hyperspectral observations for aerosol retrievals. First, even though the 
information content of aerosol profiles increases as the spectral resolu-
tion of measurements increases, the signal-to-noise ratio (SNR) de-
creases owing to less signal detected in each channel at finer resolution. 
The coarser resolution of the narrow-band filter (dashed orange line in 
Fig. 2b) contributes higher SNR than the TROPOMI spectral response 
function (solid orange line in Fig. 2b). Based on the spectral resolution of 
TROPOMI, fewer than two pieces of information about AOCH are con-
tained in a single O2 absorption channel (Colosimo et al., 2016; Frank-
enberg et al., 2012; Geddes and Bösch, 2015). Therefore, the 
convolution can reduce the influence of low SNR but still maintain a 
similar level of ALH information content. Second, unlike trace gases 
whose absorption lines determine the fine structure of the spectrum, the 
aerosol properties are retrieved in accordance with the variation of 
aerosol scattering within a large range of wavelengths well constrained 
by multi-channel observations from UV to NIR. For instance, the OMI 

aerosol retrieval algorithm fits narrow-band radiance in several atmo-
spheric window channels rather than a fine spectral structure (Torres 
et al., 2007). Last but not least, fitting the fine spectral structure of ob-
servations consumes far more time, resulting in unacceptable compu-
tational burden for an operational algorithm producing near-real-time 
products; this high computational demand is one of the motivations to 
use the neural network (NN)-based forward model in the current TRO-
POMI ALH operational algorithm (Nanda et al., 2019). In contrast, 
fitting narrow-band measurements through look-up tables, as done in 
several aerosol retrieval algorithms, is computationally efficient and 
fast. 

After convolution, due to the coarser spatial resolution in the SWIR 
(2320 nm band) than the other narrow bands, the TOA reflectance in all 
narrow bands are resampled into the same 0.05◦ × 0.05◦ standard grids 
based on the geolocation information. These standard-grid measure-
ments (hereafter called TROPOMI narrow-band measurements) are used 
in the following steps. 

2.3. Masking cloudy pixels 

After acquiring TROPOMI narrow-band TOA reflectance, the algo-
rithm conducts a series of steps to select cloud-free pixels suitable for 
aerosol retrieval. Even though the cloud product from VIIRS/Suomi-NPP 
can be co-located to mask out TROPOMI cloudy pixels (in a manner that 
is adopted in the TROPOMI ALH-O2A algorithm and provided as an S5P- 
NPP auxiliary cloud product by TROPOMI), VIIRS data needs to be 
resampled to the TROPOMI footprint, leading to uncertainty due to 
spatial and temporal mismatch. Here we utilize an independent cloud 

Fig. 2. The narrow-band filters used in this study to convolve TROPOMI spectra with high resolution: (a) the filters in all seven bands we use and the transmittance; 
(b) comparison of the narrow-band filter and the high-resolution standard filter in TROPOMI L1B data in the O2 B band expressed as “Narrow-band” and “TROPOMI” 
here; (c) is the same as (b) but for the O2 A band. 
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mask method that uses solely TROPOMI data, which compensates for 
the lack of near-real-time cloud mask and is regarded as a candidate for 
application in the operational algorithm in the future. 

Fig. 3a, c, and e show a cloud screening example for a smoke case 
over vegetation. Based on the VIIRS true color image (with observation 
time in close proximity to TROPOMI), the four regions indicated by red 
boxes are selected to represent (1) a clear-sky vegetation region without 
aerosols (vegetation); (2) a cloud-free thick smoke region (smoke1); (3) 
a cloud-free thin smoke region (smoke2); and (4) a cloudy region 
(cloud), respectively (Fig. 3a). By averaging TROPOMI TOA reflectance 
at all pixels in each region box, their mean values at all narrow bands 
except the O2 absorption bands are compared (Fig. 3c). It is clear that 
not only is the TOA reflectance for cloudy pixels in all bands higher than 
those for cloud-free pixels, but the reflectance wavelength dependence 
also shows an obviously distinction, especially in the VIS and NIR (or 
SWIR) bands, similar to the findings in our previous study (Xu et al., 
2018b). Based on this principle, different spectral slopes of TOA 
reflectance between bands from UV to SWIR, expressed as Eq. (2), are 

used as the criteria to classify a pixel as cloudy: 

kλ1 ,λ2 =
|ρλ1

− ρλ2
|

λ2 − λ1
, (λ1 < λ2) (2) 

Here, ρλ1 (or ρλ2) represents the TOA reflectance at λ1 (or λ2) wave-
length. It must be mentioned that the thick aerosol plumes sometimes 
show characteristics close to those of cloudy pixels (smoke1 in Fig. 3c ), 
while the thin smoke shows a curve similar to clear-sky pixels without 
smoke (smoke2 in Fig. 3c). Therefore, the key challenge in our cloud- 
masking process is to screen out cloudy pixels while keeping pixels 
covered by thick aerosol layers. For this purpose, we define the ratio 
between two slopes as the criteria rather than kλ1, λ2 themselves. Ac-
cording to Fig. 3c, not only is k780, 2320 higher for cloudy pixels than for 
cloud-free pixels, but also is the ratio of k680,780 to k780, 2320 is also much 
lower in cloudy regions than in other regions. As a result, both the 
spectral slopes themselves and the ratio between the two spectral slopes 
are used to mask cloudy pixels. Besides these special spectral slope tests, 
TOA reflectance tests and spatial homogeneity tests similar to those used 

Fig. 3. True color images from VIIRS/Suomi-NPP (a 
and b), spectral signal analysis of different pixel types (c 
and d), the final mask map of clouds, clear land, and 
clear water (e and f) based on the thresholds for all tests 
in Table 1, and the cloud fraction from the corre-
sponding S5P-NPP auxiliary cloud product (g and h) in 
smoke and dust events primarily over vegetated (21 
July 2019, left column) and ocean surfaces (18 June 
2020, right column), respectively. The spectral analysis 
in (c) and (d) shows the variation of the convolved 
narrow-band TROPOMI TOA reflectance as a function of 
their central wavelengths for those pixels marked by the 
red boxes in panels (a) and (b), respectively, corre-
sponding to being covered by clouds and thin and thick 
aerosol plumes over land or ocean. The smaller panels 
in (c and d) indicates the values of four types of pixels 
for three (or one in d) spectral slope tests. Each spectral 
slope is defined by the dot line shown by the red arrow. 
The white spaces in panels (e) and (f) indicate there are 
no valid TROPOMI measurements over these pixels. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the web version 
of this article.)   
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by Martins et al. (2002) and Xu et al. (2017) are used in this study as 
well. In addition, because the surface reflectance of water and land show 
different wavelength dependence (compare Fig. 3c and d), the spectral 
slopes between different bands are used in the cloud mask, and the 
definition of the threshold of each test also depends on surface type. 
Finally, the threshold defined for each test used to screen out cloudy 
pixels is summarized in Table 1 for land and water, respectively. Three 
thresholds of ρ443, ρ680, and ρ780 are applied for both land and water, as 
well as the standard deviation of ρ388 within 3 × 3 adjacent pixels, 
chosen as a homogeneity test. But in spectral slope tests, three slope 
ratios and one slope (Δ780, 2320) are used for land, while only k443,680

k780,2320 
is 

applied over water. Similarly, the ρ2320 threshold is only used over land 
and not water. All the thresholds in Table 1 are defined based on mul-
tiple tests for different smoke and dust events over ocean and land. 
However, given the limited case studies, these cloud mask tests may still 
have unexpected weaknesses when applying globally. Thus, more tests 
should be done by fully exploiting the spectral slopes from UV to SWIR 
enabled uniquely by TROPOMI for cloud screening before applying it 
globally in the operational algorithm. Furthermore, these thresholds are 
only defined for dark surfaces including water and vegetated surfaces; 
they must be adjusted for bright surfaces due to the different wavelength 
dependence of surface reflectance, which will be studied in the future. 
As a result, as shown in the flowchart in Fig. 1, we use NDVI derived 
from the MODIS surface product (details are provided in Section 2.5) as 
the criteria to screen out bright surfaces (NDVI ≤ 0.2) that are not 
suitable for this retrieval algorithm before cloud masking over land. 

Based on the thresholds in Table 1, the final cloud mask results for 
two examples (Fig. 3a and b) are illustrated in Fig. 3e and f. We compare 
them with the cloud fraction from the S5P-NPP auxiliary cloud product 
(Fig. 3g and h), which provides a statistical summary of the NPP-VIIRS 
level 2 Cloud Mask (VCM) in each S5P field of view (FOV). The cloud 
fraction is calculated as the ratio of the number of VIIRS pixels classified 
as “probably cloudy” and “confidently cloudy” to the total number of 
VIIRS pixels in the TROPOMI nominal footprint. It is clear that our cloud 
mask has better performance in those pixels covered by thick aerosol 
plumes, which are always misclassified as cloudy pixels with high cloud 
fraction (close to 1.0) in VCM; see the dust scene in Fig. 3h. Generally, 
the cloud mask method combining TOA reflectance spectral slope tests 
with reflectance and homogeneity tests in this study not only classifies 
the cloudy pixels with good performance but is also useful in TROPOMI 
near-real-time retrieval as an independent process that does not rely on a 
VIIRS product. 

2.4. Aerosol type classification 

As two major types of absorbing aerosols, coarse dominated dust 
particles and fine dominated smoke particles must be differentiated 
before fitting measured reflectance to LUT reflectance in the algorithm. 
First, after screening out cloudy pixels, only the remaining pixels with 
UVAI between 340 and 380 nm from TROPOMI operational level 2 
aerosol index product larger than 0.5 are identified as absorbing aero-
sols suitable for retrieval. Secondly, we classify the aerosols in these 

pixels as smoke or dust based on their differences in spectral scattering 
that arise from their respective sizes. 

Dust particles are more than an order of magnitude larger in size than 
smoke aerosols (e.g. volume median diameter of 5 μm versus 0.3 μm), 
leading in part to their stronger scattering at longer wavelengths, such as 
SWIR or infrared channels (Carboni et al., 2007; Skiles et al., 2017; 
Wang et al., 2010). This distinct characteristic of dust particles results in 
stronger path radiance in SWIR where the path radiance of small par-
ticles is weak and can be ignored (Hou et al., 2017). In early studies of 
the theoretical basis for the operational MODIS retrieval algorithm 
(Kaufman et al., 1997), a ratio of aerosol single-scattering path radiance 
(Lλ*, λ is the wavelength) in the red and blue channels was used to 
determine the aerosol model. By defining thresholds of this ratio, dust 
and non-dust aerosols can be distinguished. Lλ* is defined as Eq. (3): 

L*
λ = τλPλωλ, (3)  

where τλ, Pλ and ωλ represent the aerosol optical depth, scattering phase 
function, and single scattering albedo (SSA) at wavelength λ, respec-
tively. Lλ* can be calculated by using the prescribed optical properties of 
dust and smoke particles, as well as the satellite measurements following 
Eq. (4): 

ρ(θ, θ0,φ) =
ρm(θ, θ0,φ) + L*(θ, θ0,φ) + F0(θ0)T(θ)ρs(θ, θ0,φ)

1 − sρ′ . (4) 

Here, θ and φ are the viewing zenith angle and relative azimuth 
angle. F0(θ0) represents the normalized downward solar flux, and T(θ) is 
the transmission into the direction of satellite view. s is the atmospheric 
backscattering ratio, and ρ′ represents the surface reflectance averaged 
over viewing and illumination angles, while ρs(θ, θ0,φ) is the bidirec-
tional surface reflectance. ρm(θ, θ0,φ) and L*(θ,θ0,φ) are the path radi-
ance due to molecular scattering and aerosol scattering, respectively. 
Following the study in Kaufman et al. (1997), the difference (Lλ) be-
tween surface reflectance and TOA reflectance (i.e., Lλ = ρs, λ − ρλ) de-
scribes the atmospheric path radiance including molecular and aerosol 
scattering at wavelength λ if we simplify the surface reflectance as a 
Lambertian albedo. For different aerosol types at the same wavelength, 
the molecular scattering is assumed to be consistent, hence the variable 
Lλ only depends on aerosol path radiance. According to the simulations 
in Hou et al. (2017), for vegetated surfaces at shorter wavelengths, such 
as the blue band, Lλ is negative regardless of aerosol particle size. In 
contrast, in SWIR, the weak path radiance of fine particles has little 
impact on TOA radiance, resulting in positive L2320 or small negative 
values; meanwhile, L2320 for coarse aerosol particles always shows large 
negative values. Therefore, the ratio L2320/L443 (hereafter called the 
path radiance ratio) is used here as a criterion to classify large dust 
particles and small smoke particles. This rationale is similar to the 
definition of nondust absorbing aerosol index in the previous study 
about MODIS data (Ciren and Kondragunta, 2014). In addition, even 
though the absorptions at wavelength close to 2320 nm by carbon 
monoxide (CO) and methane (CH4) (likely associated with smoke 
plume) can lower ρ2320 compared to normal conditions (i.e., without CO 
and CH4), these gases are unlikely to be associated with dust plume, 

Table 1 
The thresholds of all tests used in cloud mask for two types of surface: land and water.   

Reflectance tests Spectral slope tests Spatial homogeneity tests 

Band (nm) 443 680 780 2320 k388,443

k680,780  

k680,780

k780,2320  

k443,680

k780,2320  

Δ780, 2320
d 388 

Landa 0.45 0.5 0.5 0.15/0.35b 7.0 0.25 – 0.4 0.015 
Water 0.4 0.5 0.5 –c – – 0.5 – 0.005  

a Here, only vegetated surfaces are considered, not bright surfaces. 
b The value to the left of “/” indicates the threshold for NDVI ≥ 0.6, while the value to the right is for 0.2 < NDVI <0.6 due to the large dependence of TOA reflectance 

in SWIR on the surface. 
c “–” represents that the test is not used. 
d To keep all thresholds at a similar order of magnitude, we define Δ780, 2320 = ∣ ρ780 − ρ2320∣ here. 
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resulting in positive L2320 like fine smoke particles. Therefore, the gas 
absorption has little impact on the absorbing aerosol classification. 

To test the aforementioned method, several small regions covered by 
dust or smoke aerosols with different AOD or surface reflectance sce-
narios were selected based on VIIRS true color images of several cases. In 
each region, the path radiance ratio is estimated from TROPOMI 
narrow-band TOA reflectance and real surface reflectance from an 
ancillary satellite product (e.g., MODIS or Global Ozone Monitoring 
Experiment-2, GOME-2, as described later in Section 2.5) at each pixel. 
Considering the different TROPOMI observation geometries for different 
pixels, the path radiance ratios are shown as a function of the scattering 
angle in Fig. 4. Similarly, the impact of AOD and surface reflectance on 
the path radiance ratio is tested (differently colored dots). It is clear that 
in dust cases, L2320/L443 are always positive and larger than those for 
smoke cases despite different surface reflectance and AOD; meanwhile, 
L2320/L443 has little dependence on the scattering angle. As a result, a 
threshold could be defined to determine whether a cloud-free pixel has 
dust or smoke particles, and hereafter, corresponding LUT is used in the 
retrieval. Fig. 5 shows the application of this path radiance ratio 
threshold (0.15) in the aerosol type classification for one case over the 
Tropical Atlantic Ocean on 15 February 2020. In this region, the dust 
plumes coming from the Sahara Desert may be transported southward 
over ocean and meet the smoke plume generated by the wildfires over 
land in tropical Africa along the coastal region; thus, the dust and smoke 
classification is significant in the retrieval when both aerosols may exist. 
According to the path radiance ratio L2320/L443 (Fig. 5c), the south-
western part of the aerosol plume, where L2320/L443 is larger than 0.15, 
is classified as dust transported from the desert to the ocean, while the 
eastern part is classified as smoke plume from the fires burning on 
northeastern land (L2320/L443 < 0.15). The threshold defined here is 
based on several case studies over dark targets, and it deserves more 
consideration; tests should be applied globally in the future. To compare 
with our classification results using the path radiance ratio threshold 
(Fig. 5d), the Angstrom Exponent retrieval from the VIIRS Deep Blue 
aerosol product for the example granule is presented in Fig. 5e. The large 
Angstrom Exponent (> 2.0) from VIIRS confirms the smoke pixels in 

Fig. 5d showing small particle size, while dust pixels with large particles 
have a smaller Angstrom Exponent (< 0.7). However, the mixed aerosols 
are still difficult to be distinguished in this method and may be mis-
classified as smoke along the coast in Fig. 5d. The classification of mixed 
absorbing aerosols deserves more research in the future; in this study, 
we mainly focus on dust-dominated and smoke-dominated absorbing 
aerosols. The VIIRS product provides a reference for the reliability and 
feasibility of our classification method even though it has uncertainty. 
Although the depolarization ratio of CALIOP provides more reliable 
information about non-spherical dust particles, it is hard to compare 
different aerosol subtypes at multiple layers from lidar with only one 
type from passive sensors at each pixel. Moreover, the CALIOP classifi-
cation of fine and mixed absorbing aerosols is not as good as coarse 
absorbing aerosols after being validated by AERONET inversions and 
still have some issues in the coastal region (Ciren and Kondragunta, 
2014; Ford and Heald, 2012; Schuster et al., 2012; Yang et al., 2013). 
Generally, our classification method for dust and smoke particles will be 
validated and improved in the future and deserves an independent 
study. 

2.5. Look-up tables and surface reflectance 

Following previous studies (Xu et al., 2017; Xu et al., 2019), an LUT 
is generated in which narrow-band TOA reflectances at 443, 680, 688, 
764, and 780 nm are precomputed from the Unified Linearized Vector 
Radiative Transfer Model (UNL-VRTM) for a set of AOD and AOCH 
values under multiple atmospheric and observation scenarios described 
by different surface reflectance values, Sun-Earth-satellite viewing ge-
ometries and surface pressures. Considering the limited number of 
aerosol layers information from O2 absorption measurements with 
moderately high spectral resolution (0.4 nm like SCIAMACHY and 
TROPOMI) (Corradini and Cervino, 2006), in the simulation, the aerosol 
profile is assumed to follow a quasi-Gaussian distribution function as in 
Eq. (5): 

Fig. 4. The path radiance ratio L2320/ 
L443 calculated from real TROPOMI 
data and surface reflectance data 
(from the MODIS MCD43 product 
introduced in Section 2.5) at all pixels 
in five different regions as the func-
tion of the scattering angle. The five 
regions, including the smoke over 
land with 1.0 and 2.0 AOD, smoke 
over ocean, dust over ocean and land 
cases, are represented by differently 
colored dots. Here, the AOD of the 
smoke case is derived based on 
MODIS AOD retrieval. The scattering 
angle is calculated from TROPOMI 
L1B geometry data at each pixel.   
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τ(z) = c
exp( − σ|z − AOCH| )

[1 + exp( − σ|z − AOCH| ) ]
2, (5)  

where τ(z) represents the aerosol extinction coefficient at height z. Ac-
cording to AOD =

∫
0
TOAτ(z)dz, c is a constant derived from AOD. As a 

result, the shape of aerosol extinction vertical distribution depends on 
two parameters: a half-width related parameter σ and AOCH. Based on 
Eq. (5), when z = AOCH, exp(− σ|z − AOCH|) = 1, so τ(z) reaches a 
maximum. In other words, AOCH is the height where aerosol extinction 
is the largest. As in our previous studies, σ is fixed as 1.76 km (corre-
sponding to 1.0 km half-width) in the simulations and only AOCH and 
AOD will be retrieved. 

In this retrieval algorithm, two LUTs simulated with different aerosol 
optical properties representing dust and smoke aerosols are imple-
mented. The dust aerosol model follows Xu et al. (2017) considering the 
particle non-sphericity, while the smoke aerosol model in Xu et al. 
(2019) is updated in this study using the AERONET inversion products 
located in North America in the summer of 2018 and 2019. The smoke 
microphysical parameters including the effective radius (reff) and vari-
ance (veff) for fine and coarse modes in bi-lognormal particle size dis-
tribution, the volume fine mode fraction (fmfv), and the wavelength 
dependent refractive index (real part mr and imaginary part mi), are 
derived from AERONET inversion products when the UVAI of TROPOMI 
is large (≥ 1.0). Statistically, the AERONET data two hours before and 
after TROPOMI overpass time are used to drive the climatological 
microphysical parameters of smoke (Table 2), including mr and mi at all 
five wavelengths, reff and veff for two aerosol modes, and fmfv. Among 
these parameters, the reff for fine and coarse modes, fmfv, mr at 680 and 
780 nm are assumed to increase linearly when AOD increases, while 
others are independent of AOD. Here, the refractive index at 780 nm is 
interpolated by AERONET inversion products at 675 nm and 870 nm. 

We also assume that the refractive index at the O2 absorption band is the 
same as its nearby continuum band, i.e., mr and mi at 688 nm are the 
same as 680 nm. Applying these microphysical parameters in the 
Lorenz-Mie theory based on the spherical assumption of smoke particles, 
the single scattering properties of smoke are calculated and input into 
the radiative transfer simulation. Compared with the other smoke op-
tical model in the literature, the SSA of this updated model is higher 
(0.95–0.96) and closer to the ground-based observation for smoke cases 
in North America in recent years. For the dust model, we continue using 
the climatological phase function, SSA and Angstrom Exponent between 
440 nm and 870 nm from the AERONET inversion product considering 
non-spherical dust particles at sites close to the Sahara Desert (Fig. 6). As 
illustrated by Xu et al. (2017), only the AERONET inversions with fmfv 
< 0.4 and AOD440 > 0.4 are identified as dusty scene and involved in the 
statistics. Consequently, neither the Mie nor the T-matrix model is used 
in the dust LUT simulation. Except for the aerosol properties, the spec-
tral settings and other scenario parameters in the LUT are defined as in 
Xu et al. (2019). 

The surface reflectance database is used as ancillary information in 
the retrieval algorithm. Similar to previous studies (Xu et al., 2017; Xu 
et al., 2019), based on the Global Self-consistent, Hierarchical, High- 
resolution Geography Database (GSHHGD) (Wessel and Smith, 1996), 
each TROPOMI pixel is classified as either land or water according to its 
location. Over water, the GOME-2 surface Lambert-equivalent reflec-
tivity (LER) database is applied, and the MODIS BRDF/Albedo product 
(MCD43) is used for land pixels. Instead of using the 16-day averaged 
MODIS product for the retrieval date, a climatological surface reflec-
tance database based on ten years of MODIS is used to reduce the un-
certainty of atmospheric correction in the surface product. The surface 
reflectance in MODIS’s seven bands and GOME-2’s 12 bands are fitted to 
the TROPOMI narrow bands by the linear regression method from USGS 

Fig. 5. Dust and smoke classification 
according to the path radiance ratio 
L2320/L443 (c) calculated from TRO-
POMI TOA observations and surface 
reflectance data for the aerosol plume 
over the North Atlantic Ocean on 15 
February 2020. Panel (a) shows the 
true color image from VIIRS and (b) 
illustrates the UVAI between 340 and 
380 nm from TROPOMI Level 2 aerosol 
index product. Panel (d) shows the 
final classification result for each pixel 
suitable for retrieval. The pixels with 
sun glint angle less than 30◦ are 
excluded in (c) and (d). The Angstrom 
Exponent and aerosol type retrieval in 
this region from VIIRS level 2 Deep 
Blue aerosol product are shown in (e) 
and (f). (For interpretation of the ref-
erences to color in this figure legend, 
the reader is referred to the web 
version of this article.)   

Table 2 
The climatological microphysical parameters for smoke aerosols from AERONET inversion products in North America in the summers of 2018 and 2019.  

Microphysical parameters reff veff fmfv mr (443 nm) mi (443 nm) mr (680 nm) b mi (680 nm) b mr (780 nm) b mi (780 nm) b 

Fine mode 0.017τ+0.178a 1.26 0.162τ+0.532 1.54 0.0106 0.026τ+1.513 0.00857 0.025τ+1.513 0.00855 
Coarse mode 0.579τ+2.477 0.278  

a τ is the AOD at 680 nm. 
b The mr and mi at 688 nm are the same as 680 nm. Similarly, the mr and mi at 764 nm are the same as 780 nm. 
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reflectance spectra data (Kokaly et al., 2017), as described by Xu et al. 
(2019). This study still focuses on retrieval at dark targets, including 
vegetation land surface and water surface, while those pixels with bright 
surface are screened out by NDVI ≤ 0.2 over land. 

According to the flexible spectral fitting method introduced by Xu 
et al. (2019), the AOD is determined by matching the TROPOMI narrow- 
band TOA reflectance at 443 nm with the LUT. Next, this estimated AOD 
is applied in fitting the DOAS ratios (defined as the ratio of TOA 
reflectance between the absorption band and the continuum band) of 
the O2 A and B bands to find the optimal AOCH minimizing the square 
error between observation and LUT (least-square method). In the DOAS 
ratios fitting process, the weights of the O2 A and B bands are used and 
change with surface type. For vegetated surface, the weight of the O2 B 
band is set as 0.7–0.9, larger than the O2 A band (corresponding 0.3–0.1) 
due to its lower surface reflectance, which is beneficial for aerosol 
retrieval. 

3. Retrieval case studies and validation 

After applying our two-band retrieval algorithm in several smoke 
and dust events, we present details of our AOCH-O2AB retrievals for 
seven cases (Section 3.1) and compare them with TROPOMI operational 
ALH-O2A products. Furthermore, the AOCH-O2AB and ALH-O2A are also 
compared with satellite lidar CALIOP backscatter (532 nm) and aerosol 
extinction (532 and 1064 nm) profile products. Lidar profiles from 
CALIOP provides the accurate and reliable detailed vertical structure of 
the aerosols, and therefore can be regarded as the benchmark for vali-
dating passive ALH remote sensing. The CALIOP level 1B backscatter 
profiles are compared with two products visually and their performance 
is quantified by the level 2 aerosol extinction profiles. In addition, our 
retrieved AOD is validated by the ground-based AERONET AOD in 
Section 3.2 as well. 

3.1. AOCH retrievals and comparison 

Fig. 7 displays our AOCH-O2AB retrieval for five selected smoke 
cases and two dust cases (seven rows) . The true color images from 
VIIRS/Suomi-NPP for each case are shown in the first column in Fig. 7, 
in which the CALIOP ground tracks are shown as red lines. AOCH-O2AB 
retrieved from our algorithm in the second column is compared with 
ALH-O2A (the third column) from the TROPOMI operational retrieval 
algorithm using only one O2 absorption band. The right column com-
pares the collocated AOCH-O2AB and ALH-O2A with CALIOP level 1B 
total attenuated backscatter at 532 nm (curtain plots). It should be 

mentioned that our AOCH-O2AB retrieval represents the AOCH above 
the surface, while the ALH-O2A products indicates the middle height of 
the aerosol layer relative to the geoid (http://www.tropomi.eu/sites/def 
ault/files/files/publicSentinel-5P-Aerosol-Layer-Height-Product-Read 
me-File.pdf), so we transfer the ALH-O2A to a height relative to the 
surface for comparison, as shown in the third column of Fig. 7. When 
compared with CALIOP profiles (in the last column of Figs. 7 and 8), the 
AOCH-O2AB is adjusted by the surface elevation from CALIOP products 
and represents the height relative to mean sea level, which is consistent 
withCALIOP altitude and ALH-O2A. 

The first three cases (2019-07-09, 2018-08-10, 2019-07-28) are 
smoke events over vegetation in different regions around the world. On 
9 July 2019, after the fires had been burning for two days, a big smoke 
plume was generated that covered the whole Alaskan region in the US. 
AOCH-O2AB values from our retrieval algorithm for this plume are 
found to be 2–5 km, while ALH-O2A values are nearly exclusively below 
3 km at all retrieval pixels. AOCH-O2AB for the north part of the plume 
can reach 5–6 km, higher than that of other parts of the plume (around 3 
km). However, ALH-O2A indicates greater aerosol heights at the 
southwest of the plume (3 km), while in other areas the plume is located 
almost entirely in the boundary layer. Clearly, the two products show 
different spatial patterns for the smoke plume vertical distribution. 
When compared with ALH-O2A (below 1 km), AOCH-O2AB is closer to 
the CALIOP height with dominant backscatter signal of CALIOP (3–4 
km, Fig. 7d). 

Similar performance is found for the smoke plume on 10 August 
2018 in the central US and Canada; AOCH-O2AB values of 3–4 km are 
greater than ALH-O2A and closer to CALIOP height with strong back-
scatter (Fig. 7, 2nd row). Unlike the 9 July 2019 case, the spatial patterns 
of AOCH-O2AB and ALH-O2A are similar for this smoke plume. For a 
smoke event on 28 July 2019 over Siberia (Fig. 7, 3rd row), AOCH-O2AB 
values are below 4 km for all retrieval pixels and lower than the first two 
cases, indicating the different vertical structures of this smoke plume. 
ALH-O2A values for this case are all still below 3 km, and are not as close 
to CALIOP backscatter as AOCH-O2AB. In addition to the east part of this 
smoke plume where ALH-O2A values are ~3 km, ALH-O2A values are 
always lower in other regions. In contrast, not only in the east part, but 
also in the south of this plume, AOCH-O2AB values are higher (3–4 km). 
In other words, AOCH-O2AB captures the spatial trend of smoke plume 
height but ALH-O2A may miss, which will affect the study of smoke 
plume structure and physics. 

The fourth and fifth cases (2018-11-10 and 2020-09-09, Fig. 7, 4th 

and 5th rows) illustrate the retrievals for fires starting along the US west 
coast and smoke plumes that were subsequently transported to the 
ocean, respectively. For the Camp Fire smoke plume on 10 November 
2018, higher values of AOCH-O2AB (3–4 km) are found for the down-
wind region in the south of the plume, while aerosols layer at the fire 
source region in the north are in the lower atmosphere. ALH-O2A shows 
spatial patterns similar to those of AOCH-O2AB but is biased 1–2 km low 
when compared with both AOCH-O2AB and the altitude with the 
strongest CALIOP backscatter. In addition, ALH-O2A retrieval still con-
tains several pixels contaminated by scattered clouds, which were 
screened out clearly in our AOCH-O2AB retrieval. Similarly, ALH-O2A 
values of California Fire smoke on 9 September 2020 are also smaller 
than AOCH-O2AB and CALIOP data but present spatial distribution 
similar to AOCH-O2AB. For this thick smoke plume, our AOCH-O2AB 
retrieval captures the plume with better coverage including the high 
smoke altitude along the coastline (Fig. 7r), while ALH-O2A misses those 
plume pixels misclassified as clouds by VIIRS cloud mask (Fig. 7s). 

The last two examined cases were for dust plumes over the tropical 
Atlantic Ocean originating from the Sahara Desert in the spring and 
summer (2019-03-02 and 2020-06-18). On 18 June 2020, the dust 
plume was transported a long distance, and could be lifted to 2–5 km as 
shown by CALIOP backscatter (Fig. 7x). The retrieved AOCH-O2AB ex-
hibits the comparable plume height, but ALH-O2A yields a dust layer 2 
km lower, despite the similar spatial patterns between these two (Fig. 7v 

Fig. 6. The climatological phase function and SSA for dust events from AER-
ONET inversion products at sites close to the Sahara Desert. Different colors 
correspond to different channels. 
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and w). In contrast, the dust plume on 2 March 2019 is not far from its 
source, resulting in a plume height located in the boundary layer (< 2 
km). Both AOCH-O2AB and ALH-O2A retrievals are close to CALIOP 
along its track (Fig. 7β), while the largest AOCH-O2AB is still ~0.5 km 
higher than ALH-O2A (Fig. 7z and α). 

Generally, AOCH-O2AB from our retrieval algorithm is 1–3 km 
higher than that of the TROPOMI ALH-O2A product for all study cases. 
We presume it is not only related to the additional O2 B band observa-
tions used in our retrieval, but also reflects different aerosol model 

assumptions and other details of the two algorithms. Quantitative un-
derstanding of these differences can be investigated in the future studies. 
The comparison with the CALIOP total attenuated backscatter profile at 
532 nm indicates that AOCH-O2AB is closer to the central height with 
the strongest backscatter of CALIOP, while ALH-O2A is lower. 

3.2. Validation and intercomparison 

For all the cases studied in Section 3.1, the retrieved AOD and AOCH 

Fig. 7. The retrieved AOCH-O2AB for seven selected cases (seven rows) and comparison with ALH-O2A and CALIOP L1B backscatter profiles. The first column shows 
true color images from corresponding VIIRS/Suomi-NPP granules, in which the red lines are the CALIOP tracks. The retrieved AOCH from our O2AB algorithm for 
each case is shown in the second column, while the third column illustrates the retrieved ALH from the O2A algorithm (TROPOMI operational Level 2 products) but 
relative to the surface. The CALIOP level 1B total attenuated backscatter curtain plots at 532 nm are shown in the last column, where the cyan and magenta lines 
represent the collocated mean TROPOMI retrieved AOCH-O2AB and ALH-O2A within 3 × 3 retrieval pixels of each CALIOP footprint. The error bar for TROPOMI ALH 
represents the standard deviation for these 3 × 3 retrieval pixels. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 8. Comparison of TROPOMI AOD and AOCH retrieved from our O2AB retrieval algorithm, as well as ALH from the O2A operational algorithm, with the cor-
responding AERONET and CALIOP measurements pixel by pixel for all cases in Fig. 7. (a) Scatterplot of TROPOMI 680 nm AOD versus AERONET 675 nm AOD, 
collocated at the AERONET sites. Due to the lack of valid collocated data, there are no datapoints for two of the seven cases shown in this panel. The dotted lines in 
this panel represent error envelops, i.e., ±(0.05 + 10%) AOD error. The error bar of AERONET AOD is the standard deviation of AERONET products within ±1 h of 
the TROPOMI overpass time, while the TROPOMI AOD error bar represents the standard deviation within a 0.5◦ circle corresponding to AERONET sites. (b) 
Scatterplot of collocated TROPOMI ALH within 3 × 3 retrieval pixels of each CALIOP footprint versus CALIOP AOCH defined by Eq. (6) using aerosol extinction at 
532 nm. Green markers represent AOCH-O2AB, and magenta markers represent ALH-O2A. (c) Same as panel (b) but for CALIOP AOCH calculated by aerosol 
extinction at 1064 nm. (d) and (e) Same as panels (b) and (c) but for cases over ocean. (f) and (g) Land pixels results. Also annotated are the one-to-one line (solid 
black line), linear regression fit (red line in panel (a) and green and magenta lines in panels (b-g)), number of scatter points (N), the error envelop within which 67% 
(1σ) of datapoints are (EE) (dashed green lines in panel (b-g)), root mean square error (RMSE), mean bias, linear regression equation, mean value and standard 
deviation of x-axis and y-axis data, correlation coefficient (R), and significance level (P). The error bar for TROPOMI AOCH represents the standard deviation for an 
array of 3 × 3 retrieval pixels, while that for CALIOP AOCH represents the standard deviation of over five adjacent CALIOP 5 km footprints. As mentioned in the text, 
the heights in this figure are all above mean sea level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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from our O2AB retrieval algorithm were validated with the AERONET 
AOD products and CALIOP level 2 5 km aerosol extinction profiles 
quantitatively in this section. Besides, the two retrievals, AOCH-O2AB 
and ALH-O2A for all cases are also compared statistically here. 

As shown in Fig. 8a, the mean values of TROPOMI AOD at those 
pixels within 0.5◦ of AERONET sites for each case in Fig. 7 are compared 
with AERONET AOD, which are also averaged between 1 h before and 
after the TROPOMI overpassed time. The error bars represent the cor-
responding standard deviation. To maintain the temporal consistency in 
AERONET data and spatial consistency in TROPOMI, only the points 
with standard deviation smaller than 0.2 for both AERONET AOD and 
TROPOMI AOD are shown in the scatterplot. It is clear that our TRO-
POMI AOD retrieval has good agreement with AERONET AOD, with 0.9 
correlation coefficient, 0.011 bias and 0.086 root-mean-square-error 
(RMSE). Around 67% TROPOMI AOD retrieval has the error smaller 
than 0.059 compared with AERONET AOD. The collocated AOD pairs, 
with limited data samplings, show over 72% falling in an uncertainty 
envelope of ±(0.05 + 10%AOD), similar to and at times improved over 
the uncertainty of the MODIS C5 AOD product over land (±0.05 + 15% 
AOD) (Levy et al., 2010). 

For ALH quantitative validation, based on previous studies (Koffi 
et al., 2012; Nanda et al., 2020; Xu et al., 2017; Xu et al., 2019), CALIOP 
level 2 aerosol extinction profiles at both 532 nm and 1064 nm are used 
to calculate an aerosol weighted extinction height defined in Eq. (6) as 
AOCHCALIOP: 

AOCHCALIOP =

∑n
i=1βext,iZi

∑n
i=1βext,i

. (6) 

Here, βext, i represents the aerosol extinction coefficient (km− 1) at 
vertical level i, whose altitude is Zi. As a result, AOCHCALIOP describes 
the altitude at which the aerosol extinction coefficient is the largest, 
consistent with the definition of AOCH in our aerosol model assumption. 
As described in our previous study (Xu et al., 2019), to compensate for 
the bias resulting from “clear air”, whose extinction coefficient is zero in 
CALIOP products and may be inaccurate, an exponentially decayed 
background aerosol extinction profile with 0.07 columnar AOD at 532 
nm is added when deriving AOCHCALIOP. Considering the weaker 
backscatter signal at longer wavelength, the lidar can even detect signals 
even below the strong aerosol scattering layers at 1064 nm, which are 
difficult to penetrate at 532 nm. Therefore, we validate TROPOMI ALH 
with AOCHCALIOP calculated from aerosol extinction at both 532 nm and 
1064 nm. 

In Fig. 8b and c, the green markers and lines represent AOCH-O2AB, 
while magenta represents ALH-O2A. It is clear that AOCH-O2AB has a 

better agreement with ALHCALIOP at 532 nm with an RMSE of 0.64 km 
and a correlation coefficient R of 0.87 (0.68 km RMSE and 0.85 R for 
1064 nm AOCHCALIOP) than ALH-O2A, whose RMSE is 1.75 km and R is 
0.54. Even though when compared with AOCHCALIOP at 1064 nm, the 
ALH-O2A RMSE is lower and R becomes higher, this product still has less 
agreement than AOCH-O2AB. In general, our retrieved AOCH-O2AB 
shows ~0.5 km difference when compared with AOCHCALIOP, indicating 
an improved performance over ALH-O2A that is always underestimated 
(as shown in previous studies). To further analyze the retrieval perfor-
mance on different surface types, we validate the ocean and land pixels 
separately in Fig. 8d, e and f, g. Over ocean, both the AOCH-O2AB (R >
0.8) and ALH-O2A (R > 0.7) have high correlation with AOCHCALIOP, 
whereas the ALH-O2A errors (RMSE >1 km, bias < − 1 km) are larger 
than in our AOCH-O2AB retrieval. For land surfaces, although both the 
AOCH-O2AB and ALH-O2A have degraded performance than over the 
ocean surfaces, the AOCH-O2AB still shows low errors (~0.7 km RMSE, 
< 0.5 km bias) and high correlation coefficient (R > 0.6) while the ALH- 
O2A presents errors twice to ocean cases and little correlation with 
AOCHCALIOP (R < 0.4). 

The probability density histograms of the differences between 
AOCH-O2AB, ALH-O2A and AOCHCALIOP retrievals for co-located pixels 
of all cases in Fig. 7 and their statistics are presented in Fig. 9. Green, 
magenta and blue represent the ΔAOCH equal to AOCH-O2AB 
− AOCHCALIOP, ALH-O2A − AOCHCALIOP and AOCH-O2AB− ALH-O2A, 
respectively. It is clear from Fig. 9a that the AOCH-O2AB retrieval is 
close to AOCHCALIOP with 0.13 km ΔAOCH on average, smaller than the 
mean bias of ALH-O2A (− 1.29 km). More than 75% of AOCH-O2AB re-
trievals have <0.7 km bias when compared to AOCHCALIOP, while the 
75th percentile of ΔAOCH between ALH-O2A and AOCHCALIOP is ~2 km. 
Moreover, ALH-O2A is lower than AOCHCALIOP (negative ΔAOCH) for 
nearly every case, but ΔAOCH between AOCH-O2AB and AOCHCALIOP 
displays normal distribution, indicating a quasi-random retrieval error 
of AOCH-O2AB. AOCH-O2AB is found to be ~1.6 km higher than ALH- 
O2A on average. Fig. 9b and c show the statistical histograms for ocean 
and land pixels, respectively. Even though the mean bias of AOCH-O2AB 
for land surfaces is higher than for ocean (0.43 km), it is still far less than 
the bias in the counterpart (− 2.37 km) of ALH-O2A retrievals, indicating 
the improvement of our algorithm especially over land. In summary, 
AOCH-O2AB is much closer to AOCHCALIOP than ALH-O2A. Our algo-
rithm, which adds the O2 B band, improves ALH retrieval both over the 
ocean and land, although the improvement over land surfaces is more 
significant. 

Fig. 9. The histograms of the difference between any two of the co-located AOCH-O2AB, ALH-O2A and AOCHCALIOP (ΔAOCH), as well as their statistics, including the 
total number of datapoints (N), the mean value (Mean) and standard deviation (Std), the median value (Median), the 25th, 50th, and 75th percentiles of the absolute 
values (25th perc., 50th perc., and 75th perc.). Panel (a) includes all cases in Fig. 7 while (b) and (c) are summaries of ocean and land pixels, respectively. The dashed 
lines represent median values. The co-located ALH-O2A are resampled to match the spatial resolution of AOCH-O2AB. The datapoints of the difference between 
AOCH-O2AB (or ALH-O2A) and AOCHCALIOP are the same as Fig. 8c. The AOCHCALIOP in this figure is also for 1064 nm. 
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4. The application of AOCH in PM2.5 modeling 

Although the satellite-retrieved AOCH does not contain the detailed 
aerosol profile information at multiple altitude levels, here we illustrate 
its potential application for improving surface PM2.5 estimation. Full 
application of AOCH together with AOD for surface PM2.5 air quality 
monitoring warrants future investigation in conjunction with more so-
phisticated modeling and analysis. A pilot study is presented below to 
apply the TROPOMI AOCH-O2AB observations to improve surface PM2.5 
reported in the MERRA-2 re-analysis data that are generated by the 
assimilation of AOD but without any observational constraint of the 
aerosol vertical profile. 

A smoke plume transport event from the west of North America to 
the southeast was selected for investigation. As evident in the VIIRS true 
color image on 16–18 August 2018 (Fig. 10a), this smoke plume was 
optically thick with significant day-to-day spatial variability. We 
retrieved the AOCH from TROPOMI measurements for this case and 
showed its spatial distribution overlaid by the surface PM2.5 concen-
trations from EPA sites (colored dots in Fig. 10b). The simultaneous AOD 
retrieval (Fig. 10d) is lower than the VIIRS deep blue AOD (Fig. 10e), but 
consistent with AERONET AOD products (colored dots in Fig. 10d). In 
Fig. 10b, the TROPOMI AOCH-O2AB ranges from 2 km up to 6 km and 
higher, illustrating different vertical distributions across the plume. For 
instance, those pixels shown by the pink arrows in Fig. 10b and d have 
AOD > 1.0, but AOCH are around 2–3 km. This means that most smoke 
particles concentrate in the lower atmosphere, close to the boundary 
layer. Given that smoke aerosol is fine mode dominated, the surface 
PM2.5 concentration in these regions, therefore, are expected to be high. 
Indeed, EPA PM2.5 is always larger than 80 μg/m3 here. On the contrary, 
for those pixels denoted by green arrows, despite the high AOD similar 
to pink arrow regions, their AOCH are much higher (> 5 km). As a result, 
the EPA surface PM2.5 show low values (< 20 μg/m3). Unfortunately, the 

ALH-O2A product (Fig. 10c) misses the retrieval of the heavy plume 
transported to high altitude (green arrows in Fig. 10b and d). Moreover, 
the ALH-O2A is 2–4 km lower than AOCHCALIOP for this case, so it is not 
used in the following PM2.5 study. This case qualitatively supports that 
our satellite AOCH retrievals have merit for estimating regional or 
global surface PM2.5 concentration, hence compensating for the limited 
spatial coverage of PM2.5 observation from in situ sites. 

Quantitively, we applied the AOCH-O2AB to improve the surface 
PM2.5 re-analysis from MERRA-2. As introduced by Buchard et al. 
(2017), the MERRA-2 modeling system uses the GEOS-5 Earth system 
model (Molod et al., 2015; Rienecker et al., 2008), which is radiatively 
coupled to the Goddard Chemistry Aerosol Radiation and Transport 
model (GOCART) (Chin et al., 2002; Colarco et al., 2010). It simulates 
three-dimensional mass concentration of five types of aerosols including 
dust, sea salt, sulfate, and black and organic carbon (BC and OC) with 
0.5◦ × 0.625◦ spatial resolution and 72 hybrid-eta layers from the sur-
face to 0.01 hPa. The AOD is derived from the sum of the aerosol 
extinction coefficients of all species at each vertical level, which are 
converted from mass concentration based on the assumed optical 
properties (Colarco et al., 2010). According to the particle size of each 
aerosol species in the model, fine aerosols near the surface with aero-
dynamic diameters less than 2.5 μm, known as PM2.5, can also be 
derived as model output. Both space-based AOD (e.g., MODIS, AVHRR, 
and MISR) and ground-based AOD (AERONET) are assimilated in 
MERRA-2, but the lack of constraints on aerosol vertical distribution in 
the assimilation may result in the biases in the surface PM2.5. Although 
the evaluation of the MERRA-2 total (aerosol plus molecular) attenuated 
backscatter coefficient against independent CALIOP backscatter profiles 
exhibits a similar seasonal averaged vertical structure over important 
aerosol source regions, it is possible for MERRA-2 to miss some lidar- 
detected aerosol layers above the boundary layer that are likely due to 
long-range smoke transport in specific cases (Buchard et al., 2017). The 

Fig. 10. Multiple satellite data products and surface observations 
of a smoke transport event on 08/16 (left column), 08/17 (mid-
dle), and 08/18 (right) 2018, including VIIRS true color image 
(first row), spatial distributions of AOCH-O2AB (second row) 
overlaid with hourly surface PM2.5 data (color-coded dots), ALH- 
O2A from TROPOMI operational Level 2 products (third row), 
AOD at 680 nm retrieved by this study (fourth row) overlaid with 
AEROENT AOD at 675 nm, and VIIRS AOD product at 670 nm 
(fifth row). The blue lines in (a) are the ground tracks of CALIOP. 
The surface PM2.5 data is obtained at sites from Environment and 
Climate Change Canada (ECCC) and the United States Environ-
mental Protection Agency (EPA). Both surface PM2.5 and AOD 
data are shown for the time when TROPOMI overpasses the sites. 
(For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)   
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comparison of monthly mean MERRA-2 PM2.5 with observations from 
the EPA and the Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) networks also indicates that PM2.5 biases from 
MERRA-2 may appear in the eastern US in summer (Buchard et al., 
2016; Buchard et al., 2017). 

Here we use a scaling method to quantitively show the potential of 
AOCH for improving PM2.5 re-analysis. First, similar to AOCHCALIOP 
shown above, an aerosol extinction weighted height for MERRA-2 data, 
AOCHM, is computed following Eq. (6). For each grid, the βext, i is the 
sum of the extinction coefficients for all aerosol species at level i, which 
can be calculated from the MERRA-2 three-dimensional aerosol mixing 
ratio data and the mass extinction efficiency of each aerosol type 
(Colarco et al., 2010) as follows: 

βext,i =
∑m

j=1
βext,i,j =

∑m

j=1
αi,jρiqext,j. (7) 

Here, αi, j is the mixing ratio at level i for aerosol type j, and qext, j 
represents the mass extinction efficiency of this aerosol type. ρi is the air 
density at level i, and m shows the total number of aerosol species. To 
distinguish it from AOCH from MERRA-2 (AOCHM), AOCHT is used for 
short to represent TROPOMI AOCH-O2AB retrieval in the following 
parts, where ALH-O2A is not analyzed. Due to the lack of aerosol vertical 
distribution observations in the data assimilation, AOCHM is often close 
to the boundary layer height and is inconsistent with elevated aerosols 
for the long-range smoke transport case as in Fig. 10. Thus, the differ-
ences (ΔAOCH) between AOCHM and satellite-observed AOCHT are 
remarkable, in the range of 1–4 km (color bar in Fig. 11a or c). As a 
result, the surface PM2.5 concentration is overestimated in MERRA-2 for 
this smoke case (Fig. 11a). From the spatial distribution of MERRA-2 
PM2.5 (Fig. 11b), it is clear that large errors when compared with EPA 

PM2.5 are found in those regions with large AOD and high AOCHT (green 
arrow regions in Fig. 10), where the difference between AOCHM and 
AOCHT is large. 

Therefore, next, a step-wise scaling factor scheme is conceived based 
on the values of ΔAOCH = AOCHT − AOCHM and AOD for each pixel, 
and is used to correct MERRA-2 PM2.5:  

where PM2.5, Mc indicates MERRA-2 PM2.5 data after correction from the 
original data PM2.5, M0. One threshold is defined for MERRA-2 AOD 
(AODM, 0.7), along with the two thresholds of ΔAOCH (2 km, 2.5 km) to 
distinguish different circumstances where different scaling factors are 
used. For those pixels where both AODM < 0.7 and ΔAOCH < 2 km, the 
MERRA-2 PM2.5 are close to the EPA measurements, so no correction is 
applied. If the AODM is still small but ΔAOCH is larger than 2 km and 
smaller than 2.5 km, both AOD ratio and AOCH ratio between TROPOMI 
and MERRA-2 are used to correct MERRA-2 PM2.5. For other pixels, 
where AODM is large or ΔAOCH is larger than 2.5 km, the difference in 
AOD between MERRA-2 and TROPOMI has less impact on PM2.5 con-
centration, so only the AOCH ratio is used in the correction. After 
applying this correction method, MERRA-2 PM2.5 in this smoke plume 
has a higher correlation coefficient (R = 0.88) and lower RMSE (RMSE 
= 17.866 μg/m3, Fig. 11c) than the original data (R = 0.69, RMSE =
48.567 μg/m3, Fig. 11a). The spatial distribution in Fig. 11d also 

indicates that the high bias of MERRA-2 PM2.5 is significantly reduced in 
those regions with green arrows in Fig. 10. All of the three-hourly 
MERRA-2 data and hourly EPA data used in this section are interpo-
lated at the time TROPOMI overpasses before comparison. 

In general, although the AOCH retrieved from satellite has uncer-
tainty, it provides effective and valuable information about aerosol 
vertical distribution that is currently lacking in space-borne measure-
ments. From the case study, it is deduced that global distribution of 
AOCH also has the potential to help improve surface PM2.5 concentra-
tion, especially for elevated aerosols with long-distance transportation. 
The correction method and the threshold definitions shown here are 
meant to be illustrative and conceptual, and a full investigation of AOCH 
applications to surface PM2.5 air quality monitoring deserves a separate 
study. 

5. Conclusions and discussions 

In this study, we described the development of an algorithm to 
retrieve aerosol optical central height (AOCH) over dark targets from 
TROPOMI measurements using not only the O2 A band (763 nm) but also 
the O2 B band at shorter wavelength (688 nm). Due to the lower surface 
reflectance in the O2 B band, especially over vegetation, it has the 
capability to compensate for the large impact of the uncertainty of 
surface reflectance on aerosol retrieval from the O2 A band. Based on our 
previous algorithm developed for EPIC/DSCOVR AOCH retrieval using 
these two O2 absorption bands, we adjusted and improved the algorithm 
for TROPOMI hyperspectral measurements processing in the following 
ways: (1) convolved the TROPOMI hyperspectral measurements into 
narrow-band TOA radiances ranging from UV to SWIR using a spectral 
response function with coarser FWHM, then used these narrow-band 

observations in all retrieval steps; (2) updated the surface reflectance 
using climatology of 10-year MODIS surface products to reduce the 
uncertainty from their atmospheric correction over land and selected 
dark targets based on NDVI; (3) developed a new cloud mask strategy 
suitable for TROPOMI channels based on the spectral slope of TOA ra-
diances; (4) created a method to classify dust and smoke particles from 
absorbing aerosols using the ratio of aerosol path radiance in the blue 
and SWIR bands; (5) updated the LUT for smoke particles according to 
the statistics of AERONET inversion products for recent smoke events 
(2018–2019) in the US and applied different LUTs in dust or smoke 
plume retrieval. 

After applying our two-band retrieval algorithm to several smoke 
and dust plume cases from 2018 to 2020 around the world, the retrieved 
AOCH-O2AB is compared with TROPOMI operational level 2 ALH 
product (ALH-O2A) and CALIOP backscatter profile. For all cases, 
AOCH-O2AB is found to be ~1.6 km higher than ALH-O2A on average 
and systematically closer to the central height with the strongest back-
scatter of CALIOP, effectively removing the 2 km low bias found in the 
ALH-O2A product over land. By defining an extinction weighted aerosol 
height from CALIOP aerosol extinction profile products (AOCHCALIOP), 
the quantitative validation at pixels along the CALIOP track illustrates 
that AOCH-O2AB is more consistent with AOCHCALIOP than ALH-O2A, 
with a higher correlation coefficient (R is 0.85–0.87) and lower errors 

PM2.5,Mc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

PM2.5,M0, AODM < 0.7 andΔAOCH < 2 km

PM2.5,M0 ×
AODT

AODM
×

AOCHM

AOCHT
, AODM < 0.7 and 2 km ≤ ΔAOCH < 2.5 km

PM2.5,M0 ×
AOCHM

AOCHT
,AODM ≥ 0.7 orΔAOCH ≥ 2.5 km

(8)   

X. Chen et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 265 (2021) 112674

16

(RMSE is ~0.6 km, mean bias is 0.13 km). Even though the correlations 
of our AOCH-O2AB over land are weaker than those over ocean, the 
errors are still low (RMSE is ~0.7 km, mean bias <0.5 km) and better 
than ALH-O2A whose quality is much low over land. The better per-
formance of our algorithm when compared to the TROPOMI operational 
products over both ocean and land indicates the improvement of adding 
the O2 B band in ALH retrieval, especially over land. 

Finally, a possible application of TROPOMI-retrieved AOCH-O2AB is 
shown to adjust the surface PM2.5 concentration from MERRA-2 re- 
analysis data for an elevated smoke plume case in North America. When 
compared with the in situ data measured at EPA sites, the surface PM2.5 
is overestimated by MERRA-2 for this case with long-range transport. By 
using a scaling method, the MERRA-2 PM2.5 is corrected quantitatively 
by the ratio of MERRA-2 aerosol extinction weighted height and TRO-
POMI AOCH-O2AB. As a result, the AOCH-adjusted MERRA-2 PM2.5 has 
better agreement with EPA data and the correlation coefficient is 
improved from 0.69 to 0.88, while the RMSE is reduced from ~50 μg/m3 

to ~20 μg/m3. 
The algorithm developed in this study is appropriate for dark targets 

classified by the NDVI. Over bright surfaces, the thresholds defined in 
the cloud mask and aerosol type classification strategy must be recon-
sidered due to the higher surface reflectance and its different spectral 
dependence. Additionally, the regression coefficients of surface reflec-
tance between the MODIS and TROPOMI channels also differ from this 
study. Although higher surface reflectance makes it difficult to derive 
aerosol information from satellite measurements, the surface reflectance 
in the O2 B band is still lower than in the O2 A band; thus, we believe the 
combination of the O2 B and A bands benefits the aerosol height retrieval 
over bright surfaces as well, and this will be studied in the future. 
Furthermore, although a smoke case in the Eurasia was examined in this 
study, the smoke LUT summarized from North America smoke events in 
our algorithm may not be representative for worldwide wildfires or 
other fires. Thus, more LUTs representing different smoke characteris-
tics will be required to make our algorithm operational in the future. 
Adding other LUTs simulated for a scattering aerosol model could also 
expand our algorithm to include non-absorbing aerosols. Moreover, the 

comparison with CALIOP aerosol profiles in this study is still limited to 
several case studies. We will apply our algorithm to more cases and 
compare the results with other possible aerosol profile measurements to 
summarize the statistical performance of our algorithm. The thresholds 
defined in cloud mask and the classification of dust and smoke aerosols 
deserves more tests and may be adjusted when expanded globally. The 
diverse aerosol vertical distribution shape assumptions may also cause 
some discrepancy in the ALH retrievals; this also deserves more studies 
in the future. Last but not least, the usage of satellite aerosol height 
retrieval in the correction of surface PM2.5 in this study merely shows a 
potential application of aerosol height; it may be extended in many other 
ways or fields, such as being involved in a data assimilation system or 
trained by a machine learning method to predict surface PM2.5. In 
conclusion, our retrieval algorithm provides a reliable aerosol height 
retrieval by adding the O2 B band to O2 A band measurements from 
TROPOMI for the first time and has the capability to be applied in other 
instruments with O2 A and/or B absorption bands. 
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